

Costing Studies for ARPA-E Fusion Projects

Fusion Review Meeting April 26-27, 2022

Michael Zarnstorff, PPPL Simon Woodruff, Woodruff Scientific, Inc.

Goals and Approach

- Help project teams estimate projected overnight capital costs of fusion power plants
 - particularly ARPA-E Open 2018 and BETHE projects
- Help guide R&D priorities by illuminating costliest aspects of concepts
- Improve existing costing model by benchmarking against other fusion costing codes
- Improve model by developing cost model for reduced scale fusion tritiumprocessing system

Collaboration: PPPL and Woodruff Scientific, Decysive systems, others

Team members and roles

Simon Woodruff, Woodruff Scientific

Co-Pi

Lead on Cost Model; Costing of ARPA-E Fusion Concepts

Mark Anderton, Oxford Sigma Code automation

Charles Gentile, PPPL
Tritium Systems

Ken Hammond, PPPL PROCESS modeling

Charles Swanson, PPPL PROCESS modeling

Tasks and Milestones

- 1. Analyze Nth-of-a kind costs and cost drivers for ARPA-E fusion projects
- Benchmarking Costing Model with PROCESS
 Menard 2016 pilot plant modeled & costed with PROCESS, components costed with WS code
- 3. Develop tritium systems cost scaling

 Tritium system modeled & optimized vs power. Model costs to achieve acceptable solutions.

Fusion Concept Construction Cost Modeling

- Thirteen concepts analyzed
 - Nth of a kind construction & operating costs; LCOE
 - Cost Driver analysis
 - 2nd & 3rd iteration analysis, responding to requested scenarios, including improved models
- In most cases, analysis involves proprietary information, only shared with Woodruff Scientific, Inc.

Tritium System Model (for DT based Concepts)

- Key metrics:
 - Tritium inventory: accident severity
 - Activated waste exhaust to environment (Goal: < 0.1 g/year/GWe, for PWR)
- Important parameters
 - Fusion burnup fraction and fueling efficiency (inventory)
 - Rapid recirculation of fuel (inventory)
 - High separation efficiency (exhaust)
 - T-control during maintenance
- ► Inventory and exhaust

 fusion power

From M.Coleman et al, FED 2019

- ► Technical methods exist, in principle
 - Most available commercially
 - GAMOW projects working on improvements & new methods

Cost Model Benchmarking

- Benchmarked Woodruff Cost Code against PROCESS (CCFE)
- Use ST Pilot Plant (J.Menard NF 2016)
- Improvements made to both codes in response to comparison
- For most costs, PROCESS cost estimate > Woodruff model. Some vice versa. Factor of < 1.9 for total plant direct cost.</p>
- Different basis of estimate & method
 - Woodruff model now based mainly on recent cost data
 - PROCESS: escalation of 1980s & 1990s models (Generomak, Starfire)

Cost of copper over 60 year time-frame.

- Escalation of old estimates not reliable
 - Material costs not tied to inflation
 - Does not include improved technologies, modeling, manufacturing efficiency
- ► Also: difference in detailed design choices

T2M impact and aspirational follow-on plans

- Provide costing feedback on evolving designs and technology maturation
 - Indicate important directions for improved economics
- Evaluate new concepts and approaches
 - IFE
- Compare costing model with SMR fission costing models

- Develop analysis requested by groups
 - First of a kind (technology selection and vendor quotes)
 - Scenarios (for different markets, for different powers, for different technologies)
 - Sensitivity analysis some versions are now coupled to the physics inputs, so can look at impact of physics on the LCOE
 - Advanced manufacturing methods, impact on cost drivers.
 - Neutronics analysis to determine materials thicknesses
 - Publish papers on results

